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Abstract

This paper explores the intersection of modern graphics technology and colour sci-
ence, presenting a modern approach to colour space visualization using WebGPU
and compute shader optimization. While existing solutions often require expensive
specialized software or lack real-time interaction capabilities, our implementation
leverages point-based rendering techniques and parallel computation to achieve real-
time performance on consumer hardware. The solution demonstrates how modern
graphics APIs can be utilized to create responsive, interactive visualizations of com-
plex colour spaces through web browsers. Real-time interaction capabilities enable
new possibilities for both educational applications and scientific analysis, allowing
users to explore colour relationships and transformations dynamically. We begin with
a comprehensive examination of colorimetry fundamentals, establishing the theoret-
ical framework that underpins colour perception and measurement. Building on this
foundation, we detail our WebGPU-based visualization approach, which achieves
significant rendering speed improvements compared to traditional CPU-based meth-
ods. Performance benchmarks demonstrate the effectiveness of our implementation
in delivering professional-grade accuracy while maintaining accessibility. This work
contributes to democratizing colour space visualization tools for both educational

and professional applications.
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Chapter 1

Introduction to Colorimetry

Visualizing 3-dimensional colour spaces presents a unique challenge in mod-
ern computer graphics. Despite significant advances in rendering technology, the
scientific community continues to rely on tooling that falls short of modern ren-
dering standards. Research solutions such as MATLAB’s colour space visualization
tool set, though mathematically robust, suffer from limited rendering sophistica-
tion due to their reliance on OpenGL 4.0/WebGL [20]. This gap between available
tools and modern rendering capabilities has implications for research efficacy and
knowledge dissemination in colorimetry. However, it is important to develop a deep
understanding of what we are trying to render before we address these technical
limitations and propose a more sophisticated solution. While there might be in-
finite possible combinations of wavelengths in the visible spectrum, human percep-
tion of these wavelengths is constrained by biological limitations and environmental
factors [18]. These phenomenons underscore why we need precise mathematical
frameworks—colour gamuts and colour spaces—to quantify colour relationships
objectively. This chapter establishes the theoretical foundation of colorimetry ne-
cessary for understanding the rendering approaches discussed in subsequent chapters.
By examining the physical, physiological, and perceptual aspects of colour, we will
better appreciate the complexities involved in visualizing 3-dimensional colour

spaces using modern rendering techniques.



1.1 What Is Colour?

Colour can be defined as a visual phenomenon that emerges from our governing
mechanics. That is to say, colour exists due to the intersection of various scientific

fields of study ranging from physics to biology to psychology.

1.1.1 Physical Aspect of Colour

The first step in understanding colour is understanding its physical basis.

1. Visible light is electromagnetic radiation with wavelengths between 380-780nm.
(Fig
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Figure 1.1: Colors According To Wavelengths

2. Non-visible light exists outside of this range and can be seen by some animals.

These are called ultraviolet and infrared rays.

3. These wavelengths are transformed as they bounce around the environment.
This causes objects to appear coloured by selectively absorbing, reflecting, or

emitting different wavelengths of light.

4. Wavelengths can be controlled and emitted using chemical and electrical engin-
eering. For example, most displays use minuscule liquid crystal semiconductors

to draw pixels to the screen through some sophisticated chemistry and physics.

[23]
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1.1.2 Physiological Aspect of Colour

The next step in understanding colour is grasping the physiological mechanism of
colour. Not only are we perceiving colour, but our eyes are performing many tasks
subconsciously to ensure that all light reflected into them gets translated into an
image in our minds. The specifics aren’t important for our purposes, but the fol-
lowing points should be enough information to familiarize yourself with how humans

perceive colour.
1. Our eyes contain retinal photoreceptors, also known as rods and cones.

2. Rods are very sensitive to light and are used for processing vision in low-light

conditions.

3. Cones are less sensitive to light but instead, they are highly sensitive to the

electromagnetic radiation that makes up "colour".

4. Each cone is sensitive to a specific colour. The S-Cones (/) are sensitive to
blue wavelengths, M-Cones () are sensitive to green wavelengths, and L-cones

(p) are sensitive to red wavelengths. (Fig |1.2))

1.0
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Figure 1.2: Relative Sensitivities of Retinal Photoreceptors
[16]

5. Cones then pass off the incoming light information to photoreceptor channels

so that our mind can conjure what is in front of us. Signals are processed
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through red-green channels, blue-yellow channels, and an achromatic

channel (light-dark). [16]

1.1.3 Perceptual Attributes of Colour

Although everyone sees colour differently, there so happens a set of attributes that
a large percentage of the population can agree upon when it comes to colour identi-
fication. These are commonly referred to as the perceptual attributes of colour and

are defined as follows [16]:
1. Brightness: How bright or dim a given area appears.

2. Hue: A wavelength-dependent quality that measures the similarity to one, or

a combination of two, of red, green, blue, and yellow, in a given area.

3. Colourfulness: Quantifies the degree to which a given area will exhibit more

or less hue.

4. Saturation: Relation between the colourfulness and brightness of the given
area. If a colour is said to be saturated, then the wavelengths must have high

spectral purity.

5. Chromaticity: The measure of colour intensity of a given area, independent
of brightness and hue, relative to another similarly illuminated area. See|l.3|for
a more visual explanation of chromaticity. The calculations for this are rather
long, but they can be found in the International Commission on Illumination’s

(CIE) report on Colorimetry [5].

6. Lightness: The measure of brightness of a given area, relative to the bright-
ness of another similarly illuminated area (e.g. light red V.S. dark red). The

brightness will be directly correlated to the illuminant.

The perceptual attributes of colour are important as they are the primary metrics
used to quantify colour spaces outside simple colour spaces such as RGB. These

attributes can be objectively measured using instruments such as spectroradiomet-
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Figure 1.3: CIE1931 xy Chromaticity Chart

Ol

ers. According to Hunt and Pointer , the mean colour difference between a given
sample, and the meticulously crafted and revised test set used for instrument verific-
ation, normally falls within a radius of 0.1 units (or less) of a colour difference unit
in a perceptually uniform colour space. Given that we are capable of accur-
ately measuring the wavelengths travelling throughout space, how do we represent
colour in a more intuitive manner? This leads us to our next topic that needs to be

discussed: colour spaces.
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Chapter 2

Modelling Colour Spaces

Given that there are attributes we can use to quantify colour, that would mean that
there must be some abstract way to think of colour outside of what our eyes are
telling us. Now let us introduce the concept of colour spaces. A colour space is
defined as a set of all possible colours that can be represented using a specific set of
parameters and serves as a mathematical framework for quantifying colour [16]. A
key attribute of a colour space is its linearity. The linearity of colour space depends

on whether or not it follows standard colour-blending logic.

2.1 Linear Colour Spaces

Some sources refer to linear colour spaces as additive colour spaces.

The most common linear colour space is the RGB colour space, which represents colours
using three parameters corresponding to red, green, and blue light intensities. This space
is fundamental to light-based rendering systems, including displays, LEDs, and computer

graphics. We can formally define the RGB colour space as:
RGBiinear = {(R, G, B)€R?| R, G, B€[0.0, 1.0]} (2.1)

In this representation, each component (R, G, B) represents the raw intensity of its re-
spective colour channel. This linear relationship between numerical values and light in-
tensity makes the space suitable for physical light calculations. For instance, RG Bjinear =

(0.0, 0.0, 0.0) represents the absence of light (black), while RGBjipeqr = (1.0, 0.0, 0.0)



represents maximum red intensity with no green or blue contribution. This means that

white is represented when RG Byjpeqr = (1.0, 1.0, 1.0).

While theoretically defined over real numbers in [0.0, 1.0], practical implementations typ-

ically quantize these values to integers in [0, 255] (See fig[2.1), giving us:

RGBlinear = {(R, G7 B) € ZS | R7 G7 B e [07255]} (22)

B 255

Figure 2.1: Visual Representation of the RGB Colour Space

[10]

This quantization from [0.0, 1.0] € R to [0, 255] € Z reflects a crucial practical consid-
eration in computer graphics: memory efficiency. By encoding each channel as an 8-bit
unsigned integer instead of a 32-bit floating-point number, we reduce the memory footprint
of each pixel by 75%. This 24-bit RGB format has become the de facto standard for most
applications, with higher bit depths (like 30-bit) reserved for HDR-compatible hardware.
The discrete nature of this representation naturally limits the number of representable
colours.

For the standard 24-bit format:

24-Bit RGB Colour: P(28, 3) = 2% x 2% x 2% = 16581375 representable colours (2.3)

While HDR10’s 30-bit format provides:

30-bit RGB Colour: P(2'0, 3) = 219 x 210 % 210 — 1073741824 representable colours
(2.4)

Modelling Colour Spaces 7



Though convenient for computation, this colour space presents a significant limitation: it
fails to account for human perception of light intensity. While our hardware can represent
millions of distinct colours, our eyes perceive differences in brightness non-linearly. This
perceptual gap motivates the development of non-linear colour spaces, which we will explore

in the next section.

2.2 Non-Linear Colour Spaces

Non-linear colour spaces diverge from the direct representational model we explored in
linear colour spaces. Rather than representing colours as simple combinations of primary
colours, these spaces employ mathematical transformations to map colours in ways that
better align with human perception [21] or address technical limitations. The most widely
adopted of these spaces is SRGB, which has become the de facto standard for web content

and digital displays [2].

sRGB

Although both sRGB and linear RGB make use of 8-bit colour channels, they represent
fundamentally different approaches to colour encoding. Where linear RGB maintains strict
proportionality between numerical values and light intensity, sSRGB proposes a standard-
ized non-linear transformation that better matches human perception of brightness differ-

ences [17].

To convert from linear RGB to sRGB, we first normalize our linear RGB values to the
range [0.0, 1.0] € R:

RGBlinear

RGBnorm = 98

, where 28 = 255 is the bit depth per channel (2.5)

The conversion to SRGB applies a piecewise function, performing gamma correction on

each normalized colour component (Ciineqr):

Clinear - 12.92, if Clinear < 0.0031308,
CsrGp = [17] (2.6)
1.055 - COA1066 _ 0 055, if Clipear > 0.0031308,

Modelling Colour Spaces 8



Therefore,

$RGByorm = {(Cr, Cqg, Cp) € R®| Cr, Cg, Cp € [0.0,1.0]}

We can then undo the normalization process by performing round(sRGBporm - 255) to

find that:

sRGB ={(R, G, B)eZ? | R, G, B €0,255]}

This definition is identical to the definition of RGB! What gives? If we think about the
math for just a second, we realize that the first case of the piecewise function covers nearly
100% of all colours we can represent. What does this mean? Well, let us think back to the
CIE1931 chromaticity diagram for just a second (which is also a non-linear colour

space!).

0.9 L‘;ZOI\I
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Figure 2.2: sSRGB colour space imposed on the CIE1931 chromaticity diagram

[11]

Optimizing Non-Linear Colour Representation

The CIE’s research on spectral weighting functions enabled the mapping of visible colours
under specific illuminants (white points) through values x and y . This mapping, known
as CIE1931, reveals an important insight to us: while standard 24-bit displays can represent

approximately 16 million colours, many of these numerical combinations correspond to
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colour differences that are barely perceptible to the human eye [30]. The sRGB standard

addresses this inefficiency through strategic compression of the colour space.

As illustrated in figure the sSRGB colour space forms a triangular subset within the
CIE1931 chromaticity diagram. This deliberate limitation of the colour space, known as
a colour gamut, enables more efficient distribution of the available colour values across
perceptually meaningful differences [15]. The widespread adoption of sSRGB among dis-
play manufacturers and content creators has established it as the standard colour gamut
for digital content reproduction. Nevertheless, broader colour spaces remain crucial for
professional applications. While sRGB serves well for final content delivery, maintaining
colour precision during capture, creation, and processing often requires more expansive
colour representations. This is particularly relevant in computer graphics and image pro-
cessing, where the computational cost of working with larger colour spaces is negligible on
modern hardware [15]. Modern display systems handle the conversion between different bit
depths (such as 24-bit to 30-bit) at the driver level, freeing creatives to work in whatever
colour space best suits their needs. This enhanced flexibility in colour representation sets

the stage for our final topic of the chapter...

2.3 Perceptually Uniform Colour Spaces

Colour spaces such as HSL, HSV, and CIELUYV utilize the perceptual attributes of colour
to define a colour space (See 1.1.3). This allows for a more intuitive understanding of
colour spaces, as they are directly related to how humans perceive colour. These spaces
are known as perceptually uniform colour spaces and are purposefully designed to
better represent colour in a way more representative of how humans physically perceive

colour.

2.3.1 CIELUV

The CIELUYV space, in particular, represents a significant advancement in perceptually
uniform colour representation. Unlike RGB-based spaces, CIELUV encodes colour using

three parameters that directly correspond to human perception: Lx for lightness, ux for the
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red-green axis, and v+ for the blue-yellow axis [5]. The conversion from CIEXYZ (results

of spectral weighting functions) to CIELUV begins with the calculation of Lx:

1/3
116~(Yln)/ —16 if ¥ > (&)®

I* — [5] (2.7)

903.3 - 3~ if & < (5)3

Where Y}, represents the Y tristimulus value of the reference white point (D65 in our case).

The u* and v* coordinates are then computed as:

u* = 13L" (v — u)) (2.8)

v* = 13L" (v — ) (2.9)

Where v/ and v’ are derived from the XYZ tristimulus values:

o 44X (2.10)
YT X1y 137 ‘
Y
/ ) (2.11)

U T X +15Yy +32

The variables u!, and v/, represent these same calculations performed on the reference
white point. This mathematical framework ensures that equal distances in the CIELUV
colour space correspond to roughly equal perceived differences in colour, addressing a
key limitation of RGB-based spaces. For instance, a colour difference of AE = 1 in
CIELUYV space approximates the just-noticeable difference (JND) threshold for human

perception [5].

The practical significance of perceptually uniform spaces extends beyond theoretical colour
science. In computer graphics and digital imaging, these spaces enable more intuitive colour
manipulation and more accurate colour difference calculations. When performing opera-
tions such as colour interpolation or generating colour palettes, working in a perceptually
uniform space helps ensure that the results align with human visual expectations, making
them particularly valuable for applications in user interface design, data visualization, and

digital art [15].

Modelling Colour Spaces 11
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Figure 2.3: CIE1976 ' v" Uniform Chromaticity Scale
[11]

This intersection of mathematical precision with perceptual accuracy represents the culmin-
ation of our exploration of colour spaces, demonstrating how a theoretical understanding

of human vision can be translated into practical tools for digital colour manipulation.

2.3.2 Uniform Uniformity: Colour Appearance Models

The development of perceptually uniform colour spaces has seen significant evolution since
the introduction of CIELUV. While CIELUV provided a foundation for perceptual uni-
formity, research by Takamura and Kobayashi demonstrated that its uniformity could be
substantially improved through targeted modifications. Their work achieved a 24% im-
provement in uniformity by optimizing CIELUV’s coefficient set while maintaining its core
formulation, and a further 38% improvement through minor formulation adjustments .
Notably, they achieved an additional 3-5% improvement by specifically optimizing for the
sRGB gamut, acknowledging the growing prevalence of sSRGB-compliant content in digital

applications.

The pursuit of enhanced perceptual uniformity led to the development of CIECAMO02 ,
and most recently, CIECAMI16 , which introduces a more comprehensive model of
human colour perception. However, this improved accuracy came with increased compu-

tational complexity. These colour appearance models (CAMs) rely on trigonometric

Modelling Colour Spaces 12



functions which make them substantially more expensive to compute in graphics applic-
ations. The forward model for CIECAMO2 requires trigonometric calculations for each

colour conversion, including:

h = tan"*(b/a)[22)] (2.12)

Where h represents the hue angle, and a and b are chromatic responses. This computational
overhead becomes particularly significant in real-time graphics applications where millions

of colour calculations may need to be performed per frame.

The trade-off between perceptual accuracy and computational efficiency highlights a funda-
mental challenge in colour space design in graphics. While CAMSs offer superior perceptual
uniformity compared to CIELUV, their computational demands often make them imprac-
tical for performance-critical applications. Although I will not be making use of CAMs in
this paper (perhaps better for Physically Based Rendering Pipelines [4]), I believe
that it is still important to discuss modern colour theory as CIECAM16 currently acts as

the ground truth colour model of our reality (for now!).

Now that we have an introductory understanding of colorimetry, we can finally begin

discussing the topic of rendering colour spaces in three dimensions!

Modelling Colour Spaces 13



Chapter 3

Visualizing Perceptual Colour Spaces

Using Modern Rendering Practices

The topic of rendering colour spaces in three dimensions is surprisingly under-discussed.
As a result of this, the available tooling for exploring our colour spaces in an interactive
and responsive manner is restricted to very few choices. It is important for us to briefly
investigate current tools before we begin working towards a modern rendering solution.
Once we’ve identified issues with existing solutions, we’ll seek to theorize a modern solution
for efficiently rendering colour spaces in real-time. While implementation is outside the
scope of this project, I still felt that it would be appropriate to attach some working proof of
concept. In this paper, I will present a modern and scalable colour space rendering solution
that makes use of WebGPU’s point primitives for efficient rendering. This solution can
be generalized across domains for point-cloud rendering using GPU acceleration. The goal
is to finally provide a cross-platform open-source rendering solution that can be further

developed and adapted for open and optimized scientific visualization tools.

3.1 Existing Solutions

Our current options seem to be MathWorks’” MATLAB [19], GamutVision [12], and a
plugin named Color Inspector 3D [1] for the scientific image processing suite ImagelJ Fiji
[26]. We won’t be inspecting GamutVision as it suffers from issues present in the other
solutions, and it hasn’t received any updates since 2008 [12]. The unfortunate reality is

that these products, while they accomplish their goals in displaying colour spaces in three

14



dimensions, do not do a very good job when it comes to fully depicting all colours at our

disposal in 24-bit colour and 30-bit colour.

It is also important to mention that we can use Python libraries such as PyVista for real-
time point cloud rendering, however, I found that it was quite slow with large amounts of

particles.

3.1.1 Color Inspector 3D

Color Inspector 3D, as a plugin for ImageJ Fiji, represents one of the earliest attempts at
interactive 3D colour space visualization. The plugin utilizes Java3D for rendering, which
presents several significant limitations in modern computing environments. The plugin
offers visualization capabilities for various colour spaces, but suffers from several technical

limitations:

1. Java3D has lacked official support for well over a decade. There exists a community
branch, but why choose to do graphics programming in Java when we can build

something new?

2. Limited to 8-bit colour depth per channel, making it unsuitable for HDR colour

space visualization.

3. Viewport resolution is very odd, making the visual output seem incorrect even if it

is not (see [3.1). A proper visual will be shown later in our implementation.

Figure 3.1: CIELUYV subset rendered with a squashed shape in Color Inspector 3D

Visualizing Perceptual Colour Spaces Using Modern Rendering Practices 15



While Colour Inspector 3D served its purpose for basic colour space analysis, its architec-
ture makes it unsuitable for modern colour science applications, particularly in the context

of wide colour gamut and HDR workflows [7].

3.1.2 MATLAB

MATLAB is industry standard, heavily funded scientific computation software that offers
both vertex-based mesh rendering and point cloud rendering for colour space visu-
alization (See. A glaring problem with MATLARB is that its renderer is currently stuck
using OpenGL 4.0 and WebGL , which means it is incapable of utilizing OpenGL 4.3
compute shaders I@] with its rendering backends. Upgrading to OpenGL 4.3 presents an
issue for MATLAB as this will break continuity with their WebGL implementation which
cannot support compute shaders [28]. As for MATLAB’s point clouds, they do support
CUDA acceleration, but this restricts usage to NVIDIA hardware with MATLAB installed.
By most standards, MATLAB offers enough tools for colour space visualization, though its

cost compared to the other available options makes MATLAB a difficult value proposition.

sRGB gamut surface in L*a’b* space

2 40 80 o

Figure 3.2: MATLAB point cloud (left) & MATLAB trisurf mesh (right)
8]
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3.2 Implementation Considerations

A common thread among existing solutions is their reliance on old or deprecated graphics
APIs and rendering techniques or reliance on specific hardware. This presents several

challenges for modern colour space visualization:

e Memory Management: Traditional vertex-based approaches to colour space visu-
alization require storing complete mesh or point cloud data in system memory, lim-
iting the resolution to examine colour spaces. Using modern GPU storage buffers
through APIs such as WebGPU, DirectX, Vulkan, and Metal, will allow for easily
manipulable data on the GPU that will rarely (if ever) have to be written back to
the CPU.

e Culling: When rendering dense colour spaces, it is important to eliminate anything
that is not visible to the camera. This can save on frame time, especially when

working with more than 16 million densely packed vertices in real-time.

e Real-time Interaction: The lack of compute shader support in older graphics APIs
significantly impacts the ability to perform real-time colour space transformations
and analysis. The investigation of individual points within the point cloud should

be smooth.

e Colour Precision: Non-MATLAB tools are limited to 8-bit colour depth, making
them inadequate for professional colour management workflows that require higher

precision.

e Image Loading: Not as much as a challenge, but more of a consideration. Existing
tools offer the ability to load images such as PPM files into 3-dimensional colour
space representations for colour palette inspection or analysis. It is important that

we can do the same.

Memory Requirements

If we take a moment to think about how much memory will be required to store 16 million

individual vertices in memory, it begins to make sense why Color Inspector 3D operates

Visualizing Perceptual Colour Spaces Using Modern Rendering Practices 17



at such a low resolution and does not support HDR. If the sSRGB gamut contains 16
million unique colours that are represented using three bytes we find that 16777216 x 3 =
50331648 bytes = 50.33 megabytes. By modern standards, this isn’t very much of a
memory footprint at alll Unfortunately, this is not enough information to properly visualize
our colour spaces in three dimensions, as well as allowing for normalized RGB values for
HDR support. To do this, we will have to represent each point in our colour space with
a minimum of 6 floats, giving our vertex buffer a stride of 24 bytes. If we revisit our
calculations, we find that 16777216 x 24 = 402653184 bytes = 402.65 megabytes. Our
value also doesn’t account for any extra buffers of information that might be stored which
would pose a problem for older software. This means that when representing a full 24-bit
colour space, we will need a bare minimum of 402.65 megabytes of VRAM to store our
colour spaces. If we take a look at the graphics cards from the era of Color Inspector 3D,
we’ll notice that this consumes nearly all memory available to the GPUs of the time except
for the Nvidia GeForce 7950 GX2 which had 1GB of VRAM. Luckily for us, GPUs have
come a long way and most devices have GPUs more than capable of storing these point

clouds in memory.

3.3 Modern Point Cloud Renderer

Our primary goal is to develop a renderer capable of visualizing dense particle clouds that
represent colour spaces. Specifically, we need to be capable of processing and displaying
approximately 16 million individual particles in real time, representing every possible colour
within the sSRGB colour gamut. Of course, we will offer support for HDR as well, but the
computing power necessary for processing more than 1 billion vertices in real time is a
little much for the scope of this project. So 16 million particles will serve as our goal for

benchmarking. This leads us to our key requirements.

Key Requirements

As a proof-of-concept project, the renderer must achieve:

o Real-time performance (30+ frames per second) on standard laptop hardware

e Support for both sSRGB and CIELUYV colour space visualization

Visualizing Perceptual Colour Spaces Using Modern Rendering Practices 18



o Capability to import custom colour palettes via PPM files

Technical Significance

Real-time visualization sets our approach apart from existing industry solutions. While
many tools can visualize colour spaces, real-time interaction enables enhanced learning op-
portunities and scientific applications. By achieving responsive performance on consumer

hardware, we make these visualization capabilities more accessible to users.

3.3.1 Graphics API

We have selected WebGPU as our graphics API foundation. This modern web-based

graphics API offers several advantages over its predecessor, WebGL2:

e Modern GPU Architecture Alignment

— WebGPU’s pipeline and bundle features align closely with contemporary GPU
hardware design. This architectural alignment enables more efficient GPU
resource management.

¢ Enhanced Feature Set

— Provides access to advanced capabilities typically found in hardware-level graph-

ics APIs.
— Supports the sophisticated pipeline structure necessary for our visualization
requirements.
e Optimized Rendering Capabilities

— Native support for point primitives, enabling efficient particle rendering without

geometry expansion.

— Integration of compute shaders for parallel processing of particle data, facilit-

ating real-time updates and transformations.

— Implementation of indirect drawing commands, allowing dynamic adjustment

of render workloads without CPU overhead.
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One disadvantage to WebGPU is the slow rate of adoption from browser maintainers like
Apple. Thankfully they have been working to follow in Google’s and Mozilla’s footsteps
of implementing WebGPU backends for their browsers recently [31]. With that out of the
way, | still do believe that the technical capabilities of WebGPU outshine its negatives,
and will soon grow to replace WebGL2.

These technical capabilities provide the foundation for both efficient colour space visual-
ization and the potential expansion to other particle cloud applications. The combination
of compute shaders for data processing and optimized rendering of primitives enables us
to achieve the necessary performance while maintaining the flexibility to handle diverse
visualization scenarios. Though we could go even further and implement the features men-
tioned such as indirect drawing, this will be considered outside the scope of this project,
so we will focus on implementing efficient pipelines while making use of point primitives.
This should be more than enough to prove the value of our modern rendering pipeline

concerning the other available tools.

3.3.2 Building A Modern Graphics Pipeline

Modern graphics programming APIs represent a significant evolution from OpenGL/WebGL
through the introduction of programmable graphics pipelines. These pipelines serve as
sophisticated GPU abstractions that enable developers to define device behaviour with
greater precision and control explicitly. Unlike OpenGL/WebGL’s approach of using se-
quential function calls to establish renderer state, modern APIs emphasize defining im-
mutable pipeline states upfront. This architectural shift brings substantial performance
benefits, as pipeline definitions need only occur once—either at program initialization or
object creation—significantly reducing CPU overhead. WebGPU provides access to two

distinct pipeline types, each serving specific rendering needs.

WebGPU Render Pipelines

The render pipeline in our implementation follows WebGPU’s standardized resource archi-
tecture, establishing a clear data flow from buffer resources to the final rendering output.

Our pipeline configuration, defined in pointclouds/pointcloud.ts’s initRenderPipeline(),
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Figure 3.3: Visual Depiction of WebGPU’s Complete Rendering Resource Graph

[29]

orchestrates the interaction between various WebGPU resources to enable efficient particle

visualization across different colour spaces.

The pipeline’s data flow begins with two uniform buffers, managed through a dedicated
bind group layout. These buffers maintain essential transformation matrices, connecting
to the pipeline through bind group entries that are specifically visible to the vertex shader
stage. This aligns with the resource graph’s demonstration of how bind groups serve as

intermediaries between buffer resources and the shader stages.

The vertex processing stage incorporates a structured buffer layout that mirrors the re-
source graph’s vertex buffer configuration. Our implementation utilizes a single vertex
buffer with a 24-byte stride, containing interleaved position and colour data. This buffer
connects directly to the vertex shader through the pipeline’s internal state, as illustrated in
the resource graph’s vertexBuffer entries (see fig . The vertex attributes are carefully

mapped to shader locations 0 and 1, establishing the crucial link between buffer data and

shader inputs.

The pipeline’s fragment processing stage connects to colour attachments as shown in the re-
source graph’s RenderPassDesc section. Our implementation configures these attachments

to match the system’s preferred canvas format, ensuring optimal display compatibility.

To enhance visual fidelity, our pipeline incorporates several features represented in the re-
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source graph’s Pipeline node. We employ point-list topology for particle rendering, depth
testing for proper occlusion handling, and 4x multisampling for anti-aliasing. These con-
figurations are managed through the pipeline’s internal state, affecting how the vertex and
fragment shaders process and output data. The overall architecture demonstrates how
WebGPU’s resource graph enables efficient particle visualization through a carefully or-
chestrated sequence of buffer management, shader processing, and render pass execution.
This structured approach allows our implementation to maintain consistent performance

while handling different color space representations within a single pipeline configuration.

WebGPU Compute Pipelines

Internal State

Qiarans computePass

Storage | -

Buffgr pipeline Pipeline

J //’ b!ndGroupO N
¢ / | e Shader
' : bindGroup 2
: GBQSD / bindGroup ...

Figure 3.4: Visual Depiction of WebGPU’s Compute Pipeline
[29]

In our particle renderer, compute pipelines handle the complex mathematical operations
required for particle position transformation and colour space transformations. These
pipelines will perform the critical functions of calculating colour space conversions (e.g.,
sRGB to CIELUV) and handling general transformation computations for particle trans-
lation (if needed). Compute shaders execute these calculations in parallel, processing

multiple particles simultaneously to achieve optimal performance.

For instance, when transitioning between different colour spaces, the compute pipeline
efficiently processes the mathematical transformations for all particles in parallel, updating
their positions according to the selected colour space’s coordinate system. This parallel

processing capability ensures smooth real-time performance even with large particle counts,
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making it essential for maintaining interactive visualization rates while handling complex

colour space calculations.

Our rendering system makes use of four different compute pipelines, each optimized for
specific tasks in the visualization process. The primary pipeline initializes our vertex
buffer as a general storage buffer, enabling the instantaneous creation of 16 million points
for our point cloud directly on the GPU. This eliminates CPU overhead by avoiding data
transfers between CPU and GPU memory. While a secondary pipeline exists for applying
transformations to vertex data, it serves primarily as a debugging tool. The remaining two
pipelines, found in pointclouds/cieluv.ts and pointclouds/linearrgbcube.ts, handle
the core functionality of populating vertex and colour data in our vertex storage buffer.
The colour space conversions performed in the shader kernels are simply adaptations of

the equations laid out throughout Chapter 2,

When processing PPM textures, our system addresses GPU memory alignment require-
ments by treating three 8-bit colour channels as a single 32-bit unsigned integer. We add an
alpha channel to ensure full utilization of the 32-bit space, allowing precise point indexing
from our compute workgroups based on texture data. This capability supports advanced
research applications, such as implementing depth-based point opacity, or analyzing Just

Noticeable Differences (JNDs) in CIELUV subsets (see Fig|3.5).

Figure 3.5: 8800 point CIELUV subset rendered using WebGPU renderer
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3.3.3 Results

All code for this project can be found on the project’s GitHub repository:

www.github.com /klukaszek/ColourSpaces.
An interactive demo can be found at www.kylelukaszek.xyz/ColourSpaces.

A little menu was added to add interactivity to the renderer. From this menu, we can
view the controls, load PPM files, or swap between colour spaces. In figures [3.6] and [3.7]
we can see that the point clouds draw the appropriate colours as well as the appropriate
shapes. This indicates that our rendering pipeline does indeed work as intended. Now that
we know that the renderer draws the correct things to the screen, we can now review the

performance!

Figure 3.6: 16 million point cloud of sSRGB cube using WebGPU renderer

3.3.4 Performance

Evaluating performance is important for us as we are attempting to provide a real-time
tool. Most real-time tools target 33ms response time so that we can achieve 30fps. If
possible, we are looking to get much higher than that though since 30fps is not even

enough to match the refresh rate of most modern displays.
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Figure 3.7: 16 million point cloud of CIELUV using WebGPU renderer

Memory

The resulting browser tab running our new renderer consumes anywhere between 30 —70mb
of RAM while our scene is loaded. This is great as we know for a fact that all of our data

exists on the GPU and that no CPU overhead is being incurred.

Frametime/Framerate

I will be testing the frametime of the renderer in 4 different states on two different systems
to evaluate frametime. The first system is my desktop PC which has an Intel 9600K CPU,
and an NVIDIA RTX 2070 Super GPU, using Google’s Dawn Backend. The second system
will be a base model Apple MacBook Air equipped with an M3 chip. These selections were
made with consumer hardware in mind. We will be measuring average frametime over 30

seconds. Our target frametime is < 33ms for a smooth 30 fps.

e Test Case 1: Stand still with the colour space rotating around the scene.

e Test Case 2: Pause the rotation of the colour space and evaluate performance

with no translations being applied via compute shaders.
o Test Case 3: Stand within the colour space. See
e Test Case 4: A PPM texture in place of a full resolution point cloud.
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Test Case Desktop PC MacBook Air
(Intel 9600K + RTX 2070 Super) | (Apple M3)

1. Rotating Color Space 6.99 ms 25.64 ms
2. Static Color Space 6.99 ms 20.83 ms
3. Interior View 11.34 ms 16.666 ms
4. PPM Texture 6.99 ms 16.666 ms

Table 3.1: Frametime Comparison Across Test Systems

Based on table we can see that both platforms consistently target < 33ms
frametime. This means that we have achieved our goal of implementing a real-time
particle renderer by just making use of compute pipelines and GPU instancing! Inter-
estingly enough the MacBook performs better when travelling inside of the colour space
while my PC struggles most when approaching the point cloud. This goes to show the
rapid advancements in GPU technology that Apple has made with their M series chips for

base-level systems.

Figure 3.8: Interior view of CIELUV colour space

3.3.5 Future Work

e« Tonemapping: Modern rendering pipelines offer support for HDR tonemapping.
WebGPU offers HDR tonemapping hidden behind a flag. We will not be implement-
ing HDR tonemapping as I currently lack any means to verify that it works, but the

option is there, and there is a tutorial written in Rust that outlines the implement-
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ation process available on learnwgpu [13]. There is also HTML canvas tonemapping

which should also offer the expected results as well.

Extended Image Support: Being able to load PNGs, JPEGs, HDRIs, etc., would
be an improvement of our current implementation that only supports PPM files. Ex-
tended file type support could add more opportunities for interesting visualizations

in three dimensions, HDRIs especially.

Volumetric Rendering: Making use of ray-marching in addition to kd-tree data
structures could prove useful for greatly optimizing performance and developing a
volumetric rendering pipeline similar to those used in CT scanning. Density-based
rendering could offer a large leap in performance as millions of points are being tested

on each draw that end up occluded, or simply imperceptible due to JND.

Continuous Level of Detail: Schutz et al. |24], present a method for continuous
level-of-detail (CLOD) rendering of point clouds that could offer significant per-
formance increases. By implementing their approach of using a compute shader to
dynamically select points based on target spacing and randomizing point LODs, we
could achieve smoother transitions between detail levels and reduce artifacts present
in our current implementation, especially beneficial for possible VR applications for
participant research [24]. Additionally, their technique of gradually increasing the
size of newly visible points could enhance the visual quality and user experience of
the renderer, particularly when navigating through large point cloud datasets. This
would require a transition away from instanced point primitives and instead using

SDF-drawn points on instanced quads.

Splatting: In September 2024, Yueyu Hu et al. |14] presented a novel approach for
point cloud rendering using the increasingly popular Gaussian splatting approach.
The paper’s neural approach to estimating 3D elliptical Gaussians could enhance our
WebGPU renderer by enabling high-quality surface reconstruction without per-scene
optimization. Their P2ENet architecture demonstrates impressive generalizability
while maintaining sub-30ms preprocessing latency, making it suitable for real-time
VR/AR applications. By analyzing both local and global point cloud structure, the

method optimizes elliptical parameters and surface normals of Gaussians to improve
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rendering quality, particularly for sparse or noisy regions |14]. The differentiable
splatting technique achieves over 100 FPS post-preprocessing. Most importantly,
this modern architecture enables high-quality splatting without compute-intensive
surface reconstruction while maintaining smooth textures and accurate surface nor-

mals.
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Chapter 4

Conclusions

The development and implementation of our WebGPU-based colour space visualization
system demonstrates that modern web technologies can deliver professional-grade render-
ing capabilities without specialized hardware requirements. Our implementation achieves
consistent frame times below 30 milliseconds on consumer hardware, establishing real-time
performance even without extensive optimization efforts. This performance threshold was
achieved primarily through architectural decisions, specifically the adoption of compute
shaders and point-based rendering techniques, rather than through complex optimization
strategies. The success of this implementation carries significant implications for both
educational and professional applications in the field of colour science. By achieving re-
sponsive performance through web browsers, we have effectively lowered the barrier to
entry for sophisticated colour space visualization. The combination of accessibility and
performance validates our architectural approach and suggests that further optimization

could yield even more impressive results.

This work demonstrates that as the adoption of WebGPU continues to increase, we will
soon be capable of handling computationally intensive visualization tasks while maintaining
the accessibility and convenience of web-based applications. As web technologies continue
to evolve, our implementation serves as a proof of concept for future developments in
browser-based colour science visualization tools. The achievement of sub-33ms frame times
on modern consumer hardware, coupled with the potential for additional optimization,
positions this solution as a viable alternative to traditional desktop applications for colour

space visualization and analysis.
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